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The nonlinear evolution of high-frequency disturbances in high-Reynolds-number 
Stokes layers is studied. The disturbances are composed of a two-dimensional wave 
(2a,O) of magnitude 6, and a pair of oblique waves (a, &p) of magnitude e, where 
a, p are the streamwise and spanwise wavenumbers respectively. We assume that 
/3 = 43a so that the waves form a resonant triad when they are nearly neutral. It is 
shown that the growth rate of the disturbance is controlled by nonlinear interactions 
inside ‘critical layers’. In  order for there to be a nonlinear feedback mechanism 
between the two-dimensional and the three-dimensional waves, the former is 
required to have a smaller magnitude than the latter, namely 6- O(eg). The 
timescale of the nonlinear evolution is O(e4). 

As in Goldstein & Lee (1992), the amplitude equations turn out to be significantly 
different from those of Raetz (1959), Craik (1971) and Smith & Stewart (1987) in two 
respects. Firstly, they are integro-differential equations, i.e. the local growth rate 
depends on the whole history of the evolution. Secondly the back rertction of the 
oblique waves on the two-dimensional wave is represented by two cubic terms and 
one quartic term, rather than by one quadratic term. Our numerical investigations 
show that the amplitudes of the two- and three-dimensional waves can develop a 
finite-time singularity, a result of some importance. The structure of the finite-time 
singularity is identified, and it is found that the two-dimensional wave has a ‘more 
singular ’ structure than the three-dimensional waves. The finite-time singularity 
implies that explosive growth is induced by nonlinear effects. We suggest that this 
nonlinear blow-up of high-frequency disturbances is related to the bursting 
phenomena observed in oscillatory Stokes layers and can lead to transition to 
turbulence. 

1. Introduction 
This study is concerned with the instability of a Stokes layer generated by a 

sinusoidally oscillating flat plate with speed U, cos wt* in an infinite fluid of kinematic 
viscosity v,  where t* is the time. The resulting flow has a boundary-layer thickness 
S* = (2v/w)i ,  and a Reynolds number R = U0(2/vw)4 based on 6*. It is an important 
prototype of unsteady flows as well as an exact solution of the Navier-Stokes 
equations. Experiments show that the instability of a Stokes layer on a flat wall 
consists typically of bursts of high-frequency disturbances followed by rela- 
minarization, see e.g. Merkli & Thomann (1975), Hino, Sawamoto & Takasu (1976), 
Hino et ul. (1983) and Akhavan, Kamm & Shapiro (1991~) .  This is significantly 
different from the case of the Stokes layer on a torsionally oscillating cylinder, where 
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the flow can support regular, stationary vortices due to a Taylor-Gortler type of 
instability (Seminara & Hall 1976). 

Since the basic flow is time-periodic, its linearized instability properties are 
described by equations with time-periodic coefficients, and one might expect Floquet 
theory to be applicable. Indeed, Floquet theory has successfully predicted the onset 
of Taylor-Gortler instability. For instance, Hall (1984) and Papageorgiou (1987) 
have found such instabilities both in the flow generated by a transversely oscillating 
cylinder, and in oscillatory flow through a curved pipe, respectively. Another 
successful example of a Floquet analysis is the study of von Kerczek & Davis (1976), 
where the instability is induced by buoyancy. For the Stokes layer of interest here, 
the instability is associated with the shear of the basic flow, and a Floquet analysis 
conducted by Hall (1978) shows that the flow is stable at  all the Reynolds numbers 
investigated, i.e. R < 320; indeed it is possible that according to Floquet theory, the 
flow is stable at all Reynolds numbers. However, Floquet theory concentrates on the 
net growth of a disturbance over a whole period, and experimental observations 
shows that disturbances grow intermittently. This suggests that an approach based 
on Floquet analysis may not be appropriate if the practical instability of a Stokes 
layer over a flat plate is to be understood. 

An alternative approach is to study the instantaneous instability of the flow. 
Various heuristic analyses based on a quasi-steady assumption have been suggested, 
e.g. Collins (1963), Obremski & Morkovin (1969) and Monkewitz (1983). However, as 
emphasized by Cowley (1987), these methods are mathematically inconsistent in the 
sense that the Reynolds number is first assumed to be sufficiently large that a 
multiple-scale analysis can be performed in time, but it is taken to be order one so 
that viscous effects can be retained in the Orr-Sommerfeld equations. This type of 
analysis predicts that the instantaneous profile has a lower critical Reynolds number 
at the start of the acceleration phase than at the end of it (e.g. see von Kerczek & 
Davis 1974). Akhavan, Kamm & Shapiro (1991a, b )  argued that this was in conflict 
with the observation that bursts occur at  the end of the acceleration phase. They 
suggested a transition process based on direct numerical simulations and secondary 
instability arguments. However, they did not address the inception of the modes 
which are locally the most unstable ; moreover there is at least some experimental 
evidence suggesting that transition seems to be associated with the initial growth of 
such modes (Merkli & Thomann 1975). 

Tromans (1978) and Cowley (1987) put the ad hoc quasi-steady assumption on a 
self-consistent basis by assuming that the Reynolds number was large throughout. 
They assumed that the most relevant unstable disturbances had frequencies of order 
Rw, i.e. frequencies much higher than those of the basic flow when R % 1.  The 
disturbance thus evolves over a very fast timescale (Rw)-l. This is required for 
mathematical self-consistency, but is also in good agreement with experimental 
observation. They found that at leading order, the disturbances were governed by 
the Rayleigh equation. A Rayleigh instability of the Stokes layer to high-frequency 
disturbances was identified, and the time interval over which such disturbances can 
grow was calculated. 

Wu (1991) investigated nonlinear effects for near-neutral waves in the case of both 
two-dimensional disturbances, and disturbances consisting of a pair of oblique waves 
(see also Wu & Cowley 1992 ; Wu, Lee & Cowley 1992). It was shown that a nonlinear 
interaction could take place inside the critical layers, i.e. thin regions centred on 
levels at  which the phase velocity of the disturbance is equal to the velocity of the 
basic flow. This interaction controlled the growth rate, and moreover could induce 
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a finite-time singularity. Consequently, the disturbances could be rapidly amplified 
by nonlinear effects. This suggests that instability and transition of the Stokes layer 
may be explained in terms of nonlinear growth over part of a period rather than in 
terms of the net growth over a whole period. The explosive growth of high-frequency 
disturbances may be related to the bursts observed in experiments. 

A crucial effect that we shall explore here is nonlinearity in the critical layers for 
the case of a resonant-triad interaction. For a survey of critical-layer analyses, 
readers are referred to the papers by Stewartson (1981) and Maslowe (1986). These 
review earlier work both on Rossby waves (e.g. Warn & Warn 1978), and on 
nonlinear neutral modes of the Benney & Bergeron (1969) type. Here we only review 
some previous papers which are of immediate relevance to our work. 

A pioneering work was that of Hickernell (1984) who considered the evolution of 
a two-dimensional, free Rossby-wave mode on a shear layer. By imposing an 
appropriate radiation condition at infinity, the eigenmode is singular because its 
critical level is not located at the inflexion point of the basic-flow profile. Unlike the 
forced problem studied by Warn & Warn (1978), the critical-layer dynamics is 
governed by linear equations at leading order. As a result a weakly nonlinear analysis 
is possible (cf. Stuart 1960). In particular, by retaining the unsteady term in the 
leading-order critical-layer equations, Hickernell (1984) obtained an amplitude 
equation containing a history-dependent nonlinear cubic term. On the other hand, 
the development of two-dimensional free modes with regular critical layers have been 
studied by Churilov & Shukhman (1987), Goldstein, Durbin & Leib (1987), Goldstein 
& Leib (1988) and Goldstein & Hultgren (1989). By developing the unsteady, 
strongly nonlinear, critical-layer structure of Warn & Warn (1978) they were able to 
describe the roll-up process of two-dimensional instability waves in shear layers. 

Goldstein & Leib (1989) have also considered the viscous evolution of a single 
three-dimensional oblique mode in a compressible free shear layer. They were 
concerned with the mode whose critical level coincided with the so-called generalized 
inflexion point, and hence the eigensolutions for the pressure and normal velocity 
were regular at the critical layer. They showed that nonlinear effects were associated 
with a simple pole in the temperature fluctuation, and that this lead to an amplitude 
evolution equation similar to that of Hickernell (1984) (see also Leib 1991). Their 
numerical investigations of the amplitude equation reveal that the solution can 
either blow up at a finite distance downstream or evolve into an equilibrium state. 
The final state depends on the relative size of the disturbance, the Reynolds number, 
and on the sign of the real part of the coefficient of the nonlinear term. The same 
amplitude equation was obtained by Shukhman (1991) in an astrophysical instability 
problem. 

The evolution of a pair of interactive oblique modes with the same streamwise 
wavenumber, but spanwise wavenumbers of opposite sign, was studied by Goldstein 
& Choi (1989) for a free shear layer. Again, weakly nonlinear critical-layer effects of 
Hickernell (1984) type were found; this is in contrast to the strongly nonlinear 
critical layer in the corresponding two-dimensional case (e.g. Goldstein & Leib 1988). 
Primarily this is because the streamwise velocity has a simple pole type of 
singularity. This case is also significantly different from the case of a single oblique 
wave (Goldstein & Leib 1989), because in the latter case the nonlinear effects 
associated with the pole singularity can be suppressed by an appropriate Squire 
transformation. Recently, Wu et al. (1992) have extended the analysis of Goldstein 
6 Choi (1989) by including viscosity. 

In this paper, we shall be concerned with a ‘resonant-triad’ interaction. This is a 
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‘stronger’ interaction in the sense that quadratic interactions can affect the 
development of the disturbance (cf. the cubic nonlinearity in Hickernell’s 1984 
weakly nonlinear analysis). This type of interaction takes place in many kinds of 
flows, e.g. see Craik (1985). The possibility of resonant-triad interactions between 
Tollmien-Schlichting (T-S) waves was suggested by Raetz (1959) and Craik (1971). 
They proposed the following mechanism. Suppose there is a pair of three-dimensional 
modes, say (a, +p, cl), and a two-dimensional mode, say (2a,O, cz),  where +/3 are the 
spanwise wavenumbers of the three-dimensional modes, a and 2a are the streamwise 
wavenumbers of the three-dimensional and two-dimensional modes respectively, and 
c1 and c2 are the respective phase velocities. If 

c1 = C2r (1.1) 

then a nonlinear interaction can occur at  order (amplitude)2, i.e. ‘sooner’ than the 
~rder-(amplitude)~ interaction of the non-resonant case (Stuart 1960 ; Watson 1960). 
If (1 .1)  holds only approximately, then the waves are said to be detuned. In this 
paper, we shall restrict our attention to the tuned resonant case. Goldstein & Lee 
(1992) allow for a detuned triad, although we note that a more general approach 
would be to allow for modulations in the spanwise direction (cf. Craik 1985). 
Similarly the analysis could be generalized by studying a wavepacket localized in 
space, i.e. by allowing for modulations in the streamwise direction. 

We also recall that resonant-triad modes may have more general forms and do not 
necessarily have to be associated with the same instability (e.g. Craik 1985). For 
instance, Hall & Smith ( 1988) considered an interesting resonant-triad interaction in 
concave channel flow. This flow can support both T-S waves and Taylor-Gortler 
vortices. The triad they considered was composed of a pair of oblique T-S waves and 
a Gortler vortex. Recently Thomas (1992) has studied resonant triads composed of 
T-S waves and various ‘wall modes’ for flows over compliant walls. 

As pointed out by Stuart (1962a, b ) ,  condition (1 .1)  is not readily satisfied by 
T-S waves a t  finite Reynolds numbers. Craik (1971) found that in a boundary layer, 
for a given a, (1 .1)  is valid only for certain specific values of j3, and he referred to this 
as the selective amplification mechanism. However, at  asymptotically high Reynolds 
numbers Stuart’s argument seems to have less force. Smith & Stewart (1987) put 
Craik’s analysis on an asymptotic basis by using a triple-deck style of analysis ; they 
showed that the resonant-triad interaction took place for ‘ high-frequency ’ T-S 
waves, i.e. for high-frequency solutions to the triple-deck equations. 

In the case of Rayleigh waves, condition (1 .1)  can be easily satisfied. Suppose 
(2a, 0, c) is a neutral mode of Rayleigh’s equation, then from Squire’s transformation, 
it follows that if 

the (a, _+p,  c )  modes are also neutral, and moreover the resonant-triad condition is 
satisfied. The relation (1.2) was given by Craik (1971), and is also the resonant 
condition for high-frequency T-S waves at  asymptotically high Reynolds numbers 
(e.g. see Smith & Stewart 1987). 

Recently, Goldstein & Lee (1992) studied a resonant-triad interaction in a 
boundary layer. They assumed that a weak adverse pressure gradient was present, 
so that long-wavelength Rayleigh waves existed (see also Goldstein et al. 1987). As 
in Hickernell (1984), the critical layers were of unsteady/non-equilibrium type. It 
was shown that in order for there to be a weakly nonlinear mutual interaction 
between the two-dimensional and three-dimensional waves, the amplitudes of the 
three-dimensional waves were required to be much larger than that of the two- 

p =  4301, (1.2) 
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dimensional wave. Moreover, they pointed out that the feedback effect of the three- 
dimensional waves on the two-dimensional wave was through a quartic rather than 
a quadratic interaction ; in particular the amplitude equation for the two-dimensional 
wave contained a quartic term. The solutions of the amplitude equations were found 
to develop a singularity at a finite distance downstream. 

Goldstein & Lee (1992) also showed that if the two-dimensional and three- 
dimensional waves were of equal size, then the growth rate of the three-dimensional 
waves was enhanced by the two-dimensional wave, but the three-dimensional 
waves had 1u) back reaction on the two-dimensional wave. As a result, the 
three-dimensional waves exhibited faster-than-exponential growth, while the 
two-dimensional wave continued to grow exponentially. Eventually, the three- 
dimensional waves become sufficiently large to affect the two-dimensional wave, a t  
which point the evolution entered the fully interactive resonant-triad stage. We note 
that the super-exponential growth can in fact occur even when the three-dimensional 
waves are very much smaller than the two-dimensional waves. This therefore 
provides a selective amplification mechanism for three-dimensional waves. 

A fully interactive resonant-triad of T-S waves in the Blasius boundary layer was 
proposed by Mankbadi (1992). He was concerned with the upper-branch scaling 
regime (cf. Smith & Stewart 1987), which covers almost the entire range of unstable 
Reynolds number. In  this regime, the viscous critical layer is distinct from the 
viscous wall layer and hence the flow is not described by a triple-deck structure (e.g. 
Bodonyi & Smith 1981). He showed that the dominant nonlinearity occurs in the 
critical layer. The importance of critical layers in resonant-triad interactions was 
shown earlier by Usher & Craik (1975) in a more heuristic way. 

The present study was originally inspired by an early versiont of Goldstein 6 Lee 
(1992). Our aim is to examine the fully interactive resonant-triad instability of a 
Stokes layer, and its relevance to transition -with special reference to its bursting 
nature. For convenience, we assume that the Reynolds number is sufficiently large 
so that the critical layers involved in our analysis are predominantly inviscid and 
unsteady, as in Goldstein & Lee (1992). This is in contrast to the steady viscous 
critical layer of Mankbadi (1992).$ The nonlinear terms in the amplitude equations, 
as will be shown, are determined by nonlinear interactions inside the critical layers 
and do not depend on the basic flow as a whole. Thus the results obtained are valid 
for Rayleigh instability in a wide class of shear flows. Indeed, we could formulate our 
analysis for general flows; however, we believe that the example of the Stokes layer 
is sufficiently illustrative. Finally we note that the Rayleigh instability waves in 
Goldstein & Lee (1992) have long wavelengths, while in our problem, the Rayleigh 
modes are assumed to have order-one wavelengths. Despite this difference the 
amplitude equations turn out to be essentially the same as those of Goldstein & Lee 
(1992) ; the only differences are in the coefficients. We shall discuss this aspect in $5.  

The paper is organized as follows. In $2  the underlying scaling is derived and the 
problem is formulated. Specifically, we show how nonlinear effects inside the critical 
layers come into play, and how the disturbances gradually evolve into a nonlinear 
stage from the strictly linear finite-growth-rate stage. In $3 the outer expansions are 

t In this earlier version, important features of the fully interactive interactions were highlighted, 
but not fully explored by detailed asymptotic expansions. 

$However, we note that Mankbadi (1992) may have omitted an unsteady diffusion layer, which 
surrounds the viscous critical layer. The present author is investigating this issue with Dr 
Mankbadi. 
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carried out. The asymptotic solutions of the outer problem near the critical layers are 
obtained, and as usual they contain some undetermined ‘jumps ’. The main results 
of this section are two solvability conditions which have to be imposed on higher- 
order inhomogeneous Rayleigh equations. In  $4 the inner expansions within the 
critical layers are carried out and the solutions, together with their asymptotes, are 
obtained. The jumps are obtained by matching with the outer solutions. In $ 5 ,  using 
the solvability conditions and the calculated jumps, we determine two coupled 
integro-differential equations for the disturbance amplitudes. Expressions for the 
coefficients in these equations are given, and they are evaluated for the specific 
example of a Stokes layer. Numerical solutions of the amplitude equations suggest 
that a finite-time singularity can form. The structure of this singularity is identified 
and discussed. Finally, in $6 we draw some conclusions and discuss implications of 
the present study. Since the analysis is rather lengthy, readers may find it helpful to 
look at  the main result of the analysis, i.e. the amplitude equations (5.1) and (5.5), 
before studying the details given in $$3 and 4. The main task of the analysis is to 
derive the nonlinear kernels and the associated coefficients of the nonlinear terms. 

2. Scaling arguments and formulation 
The flow is described by non-dimensional Cartesian coordinates (x, y, z) ,  where x is 

parallel to the direction of oscillation of the plate, y is normal to the plate, and z is 
the spanwise direction. If we take 6*, o-l, and U, as characteristic length, time and 
velocity scales respectively, then the basic flow is given by 

( U ,  V ,  W )  = (cos(r-y)e-y,O,O), 

where T = wt*, with t* being the dimensional time variable. We denote the perturbed 
flow by 

Following Tromans (1978) and Cowley (1987), we study the high-frequency 
instability waves, and introduce the fast timescale 

_ _ _  

(U+  u,  v, w) . 

t=RT (2.1) 

t o  take account of the frequency of Rayleigh waves. A t  any time, there exist an 
infinite number of Rayleigh modes (Cowley 1987), but the most rapidly growing 
modes can for the most part be found at those times and for those wavenumbers that 
lie beneath the solid curve A in figure 1.  In  this paper, we shall concentrate on these 
modes. 

We assume that the velocity component vZD of the two-dimensional disturbance 
has a magnitude of 0(6), and that to the leading order has the form 

vZD - 6B, #&, T )  E2 + c.c., 

where S 4 1, and the order-one complex constant B, is a measure of the scaled 
amplitude of the two-dimensional wave. Throughout the paper C.C. represents the 
complex conjugate of the part written out explicitly. For convenience, we have 
defined 

E = exp (iax-iO(t)), (2.2) 

where 
d6 
- dt = iac ( T ) + @ q T ) +  ... , 
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FIQURE 1.  Sketch of the neutral diagram for wavenumbers d = 2a (from Cowley 1987). 7,, is a point 
on the ri4ht-hand branch of the neutral curve A. In the analysis we concentrate on times close to 
T = T ~ + E J ? ~ ,  where T~ < 0 and E is the magnitude of the oblique waves. The point marked by x is 
a mode crossing point ; see Cowley (1987) for details. 

with c being a complex speed, i.e. c = c,+ici. In this study, we assume that the 
wavenumber a is of order one. 

The three-dimensional disturbance is composed of a pair of oblique Rayleigh 
waves with equal amplitudes E and equal streamwise wavenumbers a, but opposite 
spanwise wavenumbers &p. We assume that /? = d a  so that the oblique waves have 
the same phase velocity as the two-dimensional wave, i.e. we satisfy the resonant 
condition. The velocity component v3,, of the three-dimensional disturbance can be 
expressed, to leading order, in the form - do w,(y, 7 )  E C O S ~ Z  + c.c., 

where A ,  is a measure of the scaled amplitude of the three-dimensional waves (for 
simplicity we assume that the two oblique waves have equal amplitudes, although 
this restriction could be relaxed). 

According to linear theory both the two- and three-dimensional disturbances can 
grow over the same part of the Stokes-layer oscillation period, say from a time ri 
until a time 70, at which the waves become neutral (see figure 1). In  the vicinity of 
the neutral time 7,, the linear growth rates are small, and critical layers exist. Owing 
to the singular nature of Rayleigh’s equation near such critical layers, nonlinearity 
first becomes important there (see references cited in $1) .  

Before proceeding to a formal asymptotic analysis, we must obtain the underlying 
scaling, i.e. the relationships between ci, E and 8. For this purpose, we introduce the 
intermediate timescale t, = mi t which represents the ‘ slow ’ timescale over which the 
wave grows. This timescale is much ‘slower’ than the ‘high-frequency’ timescale of 
the almost neutral instability waves, but much ‘faster’ than the slow timescale over 
which the underlying Stokes flow oscillates. The disturbances are then described by 
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the timescales t, t,, and T. (In fact there is a fourth timescale in the problem, namely 
aciR-’, over which the growth rate changes (see (2.8) and (3.7)). However, for the 
purpose of our scaling arguments we do not need to consider this timescale.) In terms 
of these new variables, the x-momentum equation can be written as follows: 

a 0  ap a a a 
ay ax ax ay aZ u+v- = ----uu--uz,--uw, 

ax 

where a/at  has been replaced by -c,a/ax since this is true to the order required (see 
(2.2) and (2.3)). 

We are interested in the case where the nonlinear evolution occurs on the fastest 
possible timescale, i.e. we require that the time-variation term appears at  leading 
order in the critical-layer equations (cf. Hickernell 1984). Suppose that the thickness 
of the critical layers is O(p), then near a critical layer y = ye, where if(y,) = c,, we 
have that (8-c,) = O(p),  if we assume that g,(y,) + 0. By balancing the ctciau/at, 
and (0- c,) au/ax terms, we conclude that 

p - O(Cd (2.4) 

As in Goldstein & Lee (1992), this scaling brings in an unsteady/non-equilibrium 
effect that does not occur in the analyses of Raetz (1959), Craik (1971), Smith & 
Stewart (1987) and Mankbadi (1992). As pointed out by Hickernell (1984), such a 
non-equilibrium term leads to an amplitude equation that involves history effects 
and takes the form of an integro-differential equation. 

As a critical layer is approached, the streamwise velocity of the three-dimensional 
waves exhibits a pole type of singularity, i.e. 

U3D e/(y-yc), 

as found by Benney (1961), and as was implied by Squire’s (1933) analysis (see also 
Goldstein & Choi 1989). Hence in the critical layer, the magnitude of u3D,y = O ( E ~ - ~ ) .  
Moreover, according to the asymptotic properties of solutions to Rayleigh’s equation, 
the normal velocities of the two- and three-dimensional waves are of order IS and e 
respectively, both in the critical layer and in the main part of the flow. The nonlinear 
interaction inside the critical layer between the two-dimensional and the three- 
dimensional waves through the @lay) (vZD u ~ ~ )  term (the forcing from the 

(a/ax) (u2D U3D)7 (U2Dv3D), 

etc. terms is much smaller) produces a forcing term of 0(eSpF2) in the x-momentum 
equation. By balancing this forcing with the aciay3D/atl term, we conclude that it 
drives a three-dimensional wave component with a streamwise velocity of O ( e 8 , ~ ~ ) .  
In  order for the evolution of the three-dimensional waves to be affected by a 
quadratic resonant interaction, we require that this nonlinearly generated velocity 
smooths out the O(sctci) discontinuity in the outer solution, i.e. E S ~ - ~  - E m i  (cf. 
Hickernell, 1984; Goldstein & Lee, 1992). This balance yields 

/” - O(d). (2.5) 

We shall concentrate on the situation where there is energy feedback between the 
two-dimensional and three-dimensional waves. Conventionally, the quadratic 
interaction of the oblique waves affects the growth of the two-dimensional wave. In 
the present case this interaction takes place inside the critical layers, and produces 
a forcing of O ( S ~ , ~ - ~ )  through the (a/ax)(uiD), @lay) (u3D v3,,), and (a/&) ( u ~ ~  w ~ ~ )  
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terms. By balancing these terms with the acd auzD/at, term, we find that it produces 
both a two-dimensional wave component and a mean-flow distortion, say uM, of 
O ( S ~ ~ - ~ ) .  However, the two-dimensional wave component so generated does not 
produce a velocity jump across the critical layer. As a result, the quadratic 
interaction between the three-dimensional waves does not affect the growth of the 
two-dimensional fundamental wave (see Goldstein & Lee 1992 and also $4 below). 
The cubic interaction between the two-dimensional wave and the mean-flow 
distortion through the (a/ay) (2r2D uM) term, generates a forcing of O(s2Sp-*). 
Balancing this forcing with the aciauzD/at, term, we find that it drives an O ( S ~ & - ~ )  
two-dimensional wave component. We find that this two-dimensional wave 
component contributes a velocity jump of the same order (see $4). Moreover, the 
cubic interaction will affect the two-dimensional wave when this jump matches the 
O(6aci) N O(6p) discontinuity of the outer solution for the two-dimensional wave. 
Thus we require e28p15 - sp, i.e. 

p - O(Q).  (2.6) 

s - O(&. (2.7) 

Hence from (2.5) we have that 

Equations (2.6) and (2.7) fix the underlying scaling for our analysis. Note that the 
magnitude of the three-dimensional waves is required to exceed that of the two- 
dimensional wave. This is as found by Goldstein k Lee (1992) and Mankbadi (1992), 
but it is in contrast t o  much previous work on three-dimensional instability where it 
is generally assumed that the magnitude of three-dimensional waves does not exceed 
that of two-dimensional wave. However, a point in favour of the present scaling is 
the fact that for Stokes layers it has not yet been possible to identify a dominant two- 
dimensional instability stage by significantly reducing the background disturbance 
and introducing an artificial controlled two-dimensional disturbance. 

With the scaling fixed as above, it follows that we should concentrate on times 
close to 

namely the time at which the linear growth rate, according to a Taylor expansion, 
ac, = ac(T0) + ~ ~ c c c , ( ~ ~ ) ~ ~  + . . . , is reduced to O(&. It is at  this stage that nonlinearity 
begins to affect the evolution of our flow. We note that the disturbance evolves over 
timescale t,, while the linear growth rate and the basic flow depend parametrically 
on the slow, and very slow, timescales T~ and 7 respectively. Since the basic flow 0 
changes only on the very slow timescale 7 ,  it is sufficient to expand its profile at 7 in 
a Taylor series about ro:  

(2.8) 7 = To + €h,, 

U(y, 7 )  = B(y, T o )  + QU,(y, T o )  7, + . . . . 
Hereafter, all basic flow quantities will be evaluated at T~ unless otherwise 
mentioned. For convenience, we rewrite the nonlinear evolution timescale t, in the 
form 

t ,  = g t .  (2.9) 

The evolution picture is summarized in figure 2 for the case when the evolution 
becomes nonlinear near the right-hand branch of curve A figure 1 (our analysis is also 
valid near the left-hand branch). As illustrated, we assume that the disturbances are 
initially described by linear theory and grow exponentially. Then as the neutral time 
70 is approached, the growth rates become small, and linear critical layers emerge. As 
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Overlap 
+Linear stage---t(-Linear C L - F  domain+Nonlinear s t a g e 4  

FIGURE 2. Evolution stages and critical-layer structures. The disturbances initially grow 
exponentially according to linear theory. As they approach the neutral time T ~ ,  the growth rates 
become small, and linear critical layers emerge. As the growth rates decrease further to O(@), 
nonlinear interactions inside the critical layers control the overall development of the disturbance. 
The earlier linear and the subsequent nonlinear evolution stages are required to match in the 
overlapping domain. 

the growth rate decreases further to O(.d),  i.e. a t  times 71 = 0(1), nonlinear 
interactions take place and control the overall development of the disturbance. The 
earlier linear and the subsequent nonlinear solutions are required to match in a 
mutual domain of overlap. 

We close this section by listing the assumptions of our study. 
(i) The Reynolds number is assumed to be large throughout so that the 

disturbances evolve on a much faster timescale than that of the basic flow. Such an 
assumption is crucial for self-consistency of the quasi-steady theory. 

(ii) The disturbances are assumed to have sufficiently small amplitudes so that 
linear theory provides a valid description initially. Nonlinearity asserts itself when 
the linear growth rates become small. This means that we shall effectively consider 
nonlinear effects on slowly modulated neutral modes. One may well have reason to 
argue that the nonlinear evolution of disturbances with an order-one growth rate 
would be more realistic. However, this can only occur when the disturbances have an 
order-one magnitude as well ; a fully nonlinear theory then seems necessary. Indeed 
if it is assumed that the disturbances have a small magnitude but order-one growth 
rate, one then meets an inherent difficulty in pursuing a self-consistent treatment 
(e.g. see Craik 1985, p. 193). Thus for consistency, almost all nonlinear theories have 
to concentrate on nearly neutral modes of small amplitude. Nevertheless, in the 
present study the nonlinear evolution still occurs over a much faster timescale than 
that of the basic flow. 

(iii) The linear growth rate is assumed to be a leading-order effect in the critical 
layers. The singularity at the critical layers is then removed by this unsteady effect. 
For simplicity, we assume that the Reynolds number is large enough, i.e. 

R % E - ~  

so that viscosity does not play a leading role in the critical layers. 
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(iv) In  order for there to be an energy feedback mechanism between the planar 
and oblique waves, their magnitudes are assumed to satisfy relation (2.7). For 
simplicity we also assume that the oblique modes have equal amplitude, although an 
obvious, if algebraically messy, extension would be to relax this restriction. 

(v) We assume that the disturbance is modulated neither in the spanwise nor in 
the streamwise direction. An obvious extension would be to examine such 
wavepackets. 

Despite these restrictions, we believe that our theoretical analysis yields at least 
a partial explanation of the transition features of Stokes layers and other shear 
layers. 

3. Outer expansions 
3.1. Outer expansions and solutions 

Outside the critical layers, the unsteady flow is basically linear and is governed, to 
the required order of approximation, i.e. O(d), by the following equations : 

By eliminating the pressure terms, we obtain 

and 

(3.3) 

With the multiple timescales introduced in $2, the time derivative a/a7 should be 
interpreted as follows 

a a  , a  , a  a 
a7 at at, a7, a7, 
- + R  - +&&€s - + e-3- + - (3.7) 

The velocity (u,w,w) and the pressure p of the disturbances are expanded as 
follows : 

u = €U,+€~U,+$U,+ ..., (3.8) 

v =  € w l + € 2 1 2 + & u 3 + . . . ,  (3.9) 
w = sw,+€~w,+$w,+ ..., (3.10) 

p = €p1+€~p2+dp3+ .... (3.11) 

The presence of the two-dimensional disturbance requires that the expansions must 
be taken to one order higher than is necessary for a pair of oblique waves (Wu 1991 ; 
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Goldstein & Choi 1989 ; Wu et al. 1992). However, we shall see that the analysis at the 
first two orders are the same. 

The earlier linear solution suggests that vl can be written as 

‘U1 = A ( t ~ , T 1 , T O ) ~ l ( ~ , T O ) C O S ~ % ~ + C . C . ,  (3.12) 

where A ( t l )  is the amplitude of the three-dimensional waves, and E is defined by (2.2) 
and (2.3)’ provided that T in (2.3) is replaced by T~ (recall that the analysis is only 
valid in the vicinity of a ‘neutral ’ time). Here the dependence on T~ is due to the time 
variation of the basic flow, while the dependence of A on r1 is due to the time 
variation of the linear growth rate. Because both T~ and T~ appear only as parameters 
to the order that we work, they will not be written out explicitly hereafter. 

The function v1 satisfies Rayleigh’s equation : 

( O - C ) ( D ~ - Z ~ ) V ~ - ~ ~ ~ V ~  = 0, (3.13) 

where we have written 

The boundary conditions are that V1 vanishes both at  wall and at  infinity. For 
definiteness we will concentrate on times T~ on the right-hand side of curve A. In  this 
case there exist two critical levels, neither of which is a t  an inflexion point. The jump 
in Reynolds stress across each critical layer is non-zero, although the sum of the 
jumps is zero. 

is thejth critical level; then as 17 + f 0, pl has the following 
asymptotic solution : 

Let 17 = y - d ,  where 

(3.14) 

where #, = q+$p,q2+ ... and (bb = 1+q,q2+ .... 

The function v2 has the form 

?I2 = V2(y, t l )  cos /3%E +B(t l )  (b2(y) E2 + v(0*2)(y7 tl) cospz + C.C. + . . . , (3.15) 

where B(b2E2 is a two-dimensional wave with scaled amplitude B(tl) ,  and g2 is the 
deviation of the eigenfunction of the three-dimensional waves from the neutral state. 
The function (b2 satisfies Rayleigh’s equation, and we have assumed that 2a = 6; 
thus 

(b2 = q. (3.16) 

As for a pair of oblique waves (Wu 1991), g2 satisfies the inhomogeneous Rayleigh 
equation : 

(3.17) 
The asymptotic form of v2 is 

5 - - bjl’q log 1171 + r, + b t  8,) 17 log 1711 + * * + cjl’ (ba + q[$, +p, 9, log I?/q, 
(3.18) 
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where (3.19) 

(3.20) 

(3.21) 

At O(&, it is sufficient to solve for the deviation of the two-dimensional wave 

v3 = $3(y,tl)E2+C.C.+ ... . (3.22) 

The function $3 satisfies an inhomogeneous Rayleigh equation similar to that for v8, 
namely 

All basic flow quantities are evaluated at time 70 and at the critical level A. 

eigenfunction from its neutral state ; for this purpose we write 

(3.23) 
The asymptotic behaviour of $3 as 11 +. f 0 is 

$3 - -q R, 1% 1111 + ( a p ,  +q 55) 11 log 1111 + . . . + q 9, +q [ h + P j  $a log Iql], 
(3.24) 

where (3.25) 

(3.26) 

Note that Cf and Df are generally different from cf and df respectively, since the 
right-hand side of (3.17) differs from that of (3.23). The jumps (aT-a;) etc. will be 
determined by analysing the critical layers. 

According to the continuity equation, we can write w1 = A(tl)al(y)Esin/3z+ C.C. ; 
then ii& satisfies 

'+4 w -1 - -&, - ay u-c 
(3.27) the solution of which is al = ir1sin8[Dg/(IT-c)tf1-tfl,,], 

where sin 8 = /3//n = 443. 

The velocity u1 takes the form 

u1 = A (tl) Gl( y) E COB /32 + $0. "(y , tl) cos 2/32 + C.C., 

where al can be obtained from the continuity equation: 

a1 = - (ia)-l{[Ug/( IT- c) vl -vl, y] sin2 e+ tfl, (3.28) 

Note that as in Goldstein & Choi (1989), a spanwise-dependent mean-flow component 
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t~!O*~)(y, tl)  cos 2/32 has to be included in order to match with the inner solution. As will 
be shown later, this is driven by the slip velocity generated by nonlinear interactions 
inside the critical layers. In turn it drives a longitudinal vortex in the main part of 
the flow. 

Similarly p, = A(t,)plEcos/3z+c.c., and 

pl = i r '  cos e[0, vl - ( 0 - c )  vl, 2/ ] .  (3.29) 

As y + d ,  the asymptotic behaviour of pl,El ,ml can be shown to be 

jil-iz102/cos8bf+... ,  a, - -(ia)-'sin2BbfV-'+..., ul - z1 sin BbfV-'+ . . . . 
It is worth noting that the singularity in t ~ ,  is a simple pole, rather than the 
logarithmic branch point which is characteristic of the two-dimensional case. It is 
this difference that results in the faster nonlinear evolution timescale in the three- 
dimensional case. For free shear layers, Goldstein & Choi (1989) have shown that 
because of this pole type of singularity, the critical-layer dynamics of two- 
dimensional and three-dimensional disturbances are significantly different. In the 
former case the dynamics is strongly nonlinear (e.g. see Goldstein & Leib 1988), while 
in the latter case it is weakly nonlinear. Craik (1971) pointed out that this pole was 
the reason why the quadratic interaction coefficients for the oblique waves were 
O(R)- 

At the next order in the pressure perturbation, we only need to solve for the two- 
dimensional wave component ; therefore we write 

p, = B(t,)j~,(y) E2 + C.C. + . . . . 
It is found that 

(3.30) 

ji2 = $ia-'[ Uv q52 - ( 0- c)$,, J , (3.31) 

and that as y + d ,  
p, - $ia-'02/ bf + ... . (3.32) 

We now introduce an inner variable: 

Y = V/d .  (3.33) 

The outer expansions written in terms of the inner variable are as follows: 

w N EbfAE C O S / ~ Z  + d log &( - bfr j  + bfp,AY) E cos/3+ &{[( - btr, log IyI +dF) 

+ A  (a? Y + bf Y log I yl)] E cos /3z + bfBE2} + 2 log d{ [ (ufr ,  + bts,  + dfp,)Y 
+ $4pj b t  P] E cos / 3 ~  + ( - bfRj + bfpj  BY) E2} 
+ d{ [cf Y+ (@r,  + b f ~ ,  + dfp,)Y log 1 yl] E cos /3~ + [( - btR, log IyI +Df ) 
+ B(a? Y + bf Y log I yl)] E2} + E: log d{ [(afR, + bf8, +D.,$pj)Y 
+$p, b t  YZ] E2 + . . .} + et{ [Cf Y + (afR, + bf8, +Dfp,)Ylog Iyl]E2} 

+c.c.+ ..., (3.34) 
(3.35) 

(3.37) 

u - &( - ia)-l sin' BAbf Y-'E cos/3z + C.C. + . . . , 

p - eia-'02/ cos BAbtE cos /3z + &a-' D2/ bfBE2 + c.c. + . . . . 
w - e k l  sin Bbf A Y-'E cos /3z + c.c. + . . . , (3.36) 
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3.2. Solvability conditions 
Multiplying both sides of (3.17) by Vl, integrating from 0 to +a, and using the 
asymptotic solutions (3.14) and (3.18), we obtain the solvability condition for (3.17) : 

dA 
iCc-'J, - + J ,  7' A = - { (bf cf - b; c;) - rr( bf a;' - b; a;) 

dtl 3 

-p3 (bf d;' - b; d;) - (af df -a; d;)}, (3.38) 

where the sum is over all critical layers, and J ,  and J ,  are constants defined by 

(3.39) 

(3.40) 

Note that these integrals are singular and should be interpreted in the sense of 
Hadamard (see $4). 

By the same procedure, the solvability condition for (3.23) is derived as follows: 

dL3 
i(2a)-'Jl-+ J, 71B = - {(bfCf - b; C;) -R3(bf af - b; a;) 

dtl 3 

- p3( b; Df - b; D;) - (af Df - a; D;)}. (3.41 ) 

Equations (3.38) and (3.41) are crucial in deriving the amplitude equations. The 
jumps (af-a;) etc. will be determined by analysing the critical layers. It is 
important to note that the left-hand sides of (3.38) a d  (3.41) are linear and that 
nonlinear terms come from the critical layers through these jumps. Thus in the 
analysis of the critical layers, it is sufficient to concentrate only on the solutions 
contributing to these jumps. Since we find that the solution driven by the quadratic 
interaction of the three-dimensional waves does not contribute t o  any jump, the 
quadratic term involving the three-dimensional amplitude will not appear in the 
amplitude equation of the two-dimensional wave. The reader who is not especially 
concerned with the rather messy algebraic details within the critical layers can omit 
the following section at a first reading. 

4. Inner expansion 

layer take the form: 
Expressions (3.34)-(3.37) suggest that the inner expansions within the j t h  critical 

u = du~+€~u,+Etu8+€~u4+..., 
V = € K + & + & + & +  ..., 

w = d~+e~W,+&~+dWQ+ ..., 
p = €P1+EtP,+E%Pa+ ... , 

where the O(en log 0) terms are not written out explicitly since they match onto the 
outer solutions automatically whenever the solutions at 0(en) match with their 
corresponding outer expansions. 

We shall see that the solutions at the first two orders are available from the 
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analysis for a pair of oblique waves (Goldstein & Choi 1989 ; Wu 1991), but with some 
modification due to the presence of the two-dimensional disturbance. 

The function V, satisfies the equation 

LOa2v,/ay2 = 0, (4.5) 

(4.6) where L, = a p t ,  + ( uy Y + uT 7,) a/az. 

The solution 

V, = A(t,) E C O S @ +  C.C. (4.7) 
matches with the outer solution if d(t,) = b,A(t,), and bf = by = b,, i.e. if the jump 
@,+-by) is zero. 

Expansion of the y-momentum equation gives 

w,/ay = 0, (4.8) 

and so P, = iEIUycosOdE cospz+c.c. 

The function W, satisfies the equation 

L, w, = -ap,/az. (4.9) 

Let W, = q(Y,t,)Esinpz+c.c., then R satisfies 

Li1)R = iOy sin 0 cos eA, 

where Lp) = a /a t ,+nia(U,~+D~7~) .  

The solution that matches with the outer solution is 

R = iO,sinecosewf), 

where we have put 

Similarly, we write U, = ol(Y, t,)  E cospz+c.c. ,  and then 

0, = - Oy sin2 e w p .  

A t  O(&, we write the pressure as 

Pz = Pp*y Y, t,) E2 + P p  1) E cos pz + C.C.,  

where pp* O) satisfies 

a P y ) / a Y  = 0. 

The solution that matches with the outer expansion is 

p . 0 )  2 = +-1g$. 

(4.10) 

(4.11) 

(4.12) 

The three-dimensional pressure component @* l) is not needed in the following 
analysis. 

The velocity V, satisfies 

(4.13) 
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where 

and 

(4.14) 

Furthermore, the Reynolds stresses S,, and S3, can be expressed as 

S,, = S ~ 0 , . 0 ~ + S ~ ~ 2 ~ ~ ~ s 2 / 3 ~ + S ~ ~ o ) E 2 + S ~ 2 ) E 2 ~ ~ s 2 / 3 ~ + ~ . ~ . ,  (4.15) 

(4.16) S3, = S g  2, cos 2/32 -+ Sit ')E2 cos 2/32 + C.C. 

After some calculation, it can be shown that 

sfi 0 )  = +p, Sin2 ,gd*w(l) 0 ,  (4.17) 
810,. 2) = iiapu sin2 eA* W F ) ,  (4.18) 

S$ 0 )  = ii.5 sin2 e[AVp + 2 sin2 ePgWp], (4.19) 
8% 2) = LiaP 2 Y  sin2 e&@(i) 0 ,  (4.20) 

s$o,.~) = i/3auZ, c o s 2 e [ A * ~ ~ ) + 2 s i n 2 e ~ ~ 0 ) ~ ; ( 0 ) 1 ,  (4.21) 

sit 2) = UP, c ~ s 2  eA@y. (4.22) 

Inspecting the right-hand side of (4.13), and using (4.15) and (4.16), we conclude that 
V2 has the solution of the following form 

V, = Q)E cos / 3 ~  + ?$'* ') cos 2/32 + ??- O)E2 + c . .  c (4.23) 

The three-dimensional fundamental component pi1) is driven by the linear forcing 
term only, i.e. Llq = iao,,d, which is exactly the same as in the two-dimensional 
case studied by Wu (1991). By the same procedure, we obtain the following jump 
conditions : 

u;-u; = scipjb,sgn(D,), (4.24) 
di+-d; = -.rcir,b,sgn(O,). (4.25) 

Substituting (4.17)-(4.22) into (4.13), we find that 

( a p t , )  @.:& = - i s 3  sin2 e[A*Wr) + 4 sin2 eW;(Wp], (4.26) 

(4.27) j22 .0)  2 , Y Y  - - 83 sin2 B [ d f i p  + 4 sin2 e@p JQO], 
where we have put 

S =  ao,. (4.28) 

The solutions are found to be 

(4.30) 

In writing ?!fs:& in the compact form (4.29), we have omitted a purely imaginary 
part ; from (4.23) this does not alter the physical velocity. A similar procedure will 
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be followed on simplifying the solution for 
with respect to Y yields 

later on. Integrating p&!?& once 

where we have put 

SZ = aUY Y ,  ij = aUrrl ,  (4.32) 

and an integration constant (or more precisely a function of tl) is taken to be zero by 
matching with the corresponding outer solution. 

Instead of integrating l?&?) to get p2vo), we obtain it from the x-momentum 
equation together with the continuity equation in the following way. The continuity 
equation is 

(4.33) 

and the x-momentum equation is 

(4.34) 

The first term of the right-hand side, which is absent in the case of a pair of oblique 
waves (Goldstein & Choi 1989; Wu 1991), is the pressure related to the two- 
dimensional wave, and the second term is the forcing from the nonlinear interaction. 
From the above two equations we obtain 

2ia,f3,29 0 )  + V(290) 2, y = 0 

0:' 0 )  + 0 Y 0 )  = - (2ia) pi(2v 0 )  - ~ ( 2 9  11 0 ) .  

fp 0)  - - jj -@-1p) 0 V ( 2 , O )  2, Y - q l s ( 2 , o ) .  11 (4.35) 

It transpires that the above expression for pflo) is helpful in evaluating the 
asymptotic behaviour of related solutions at  higher order. 

The function W2 satisfies the following equation : 

L, w, = -ap2/a2-F2(~aw1/ax-s3,, (4.36) 

where F2(Y) =t-UY,Y"+UYrrlY+au,r~. 
The velocity W, has the form 

W, = I V ~ ~ ) E  sin /3z + I@'- 2) sin 2/32 + Wi2. 2 ) ~ 2  sin 2/32 + c.c., (4.37) 

where l@c,l) is the component driven by linear forcing through the first two terms on 
the right-hand side of (4.36) ; it does not need to be worked out because it does not 
contribute to the jumps. The solutions forced by the nonlinear interaction are 
and 2), which satisfy the following equations respectively : 

(a/atl) 2) = -sit 2), (4.38) 

j$) W ( 2 , 2 )  2 = -S'2,2)* 31 (4.39) 

The solutions are 

(4.40) 
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Hence from the continuity equation pql~y2) + 2,8@i09 2, = 0, we have that 

p!&?) = f 1 2  sin2 0 lm d 6 l m  dy(.5+ 4 sin2 Br])A*(t, - y ) A ( t ,  -7 -6) e-mc. (4.42) 

Integration with respect to Y then yields 

Note that as a+ k 00, i.e. Y-t  L- 00 (see (4.32)), 

( ?!jo* 2, + c.c.) - k @sin4 On yld(t, - y)12 dr] + [order-one ‘ no-jump ’ terms] + o( 1 ). lm 
We conclude that a vortex component must be included in the O(&) outer expansion 
of v so that it matches to p f , 2 ) .  

The function U2 satisfies 

(4.44) 
awl as,, - aw, +u -, 

a Z  axaY ay I aZ 
- aw, Lo u2, y = - u,, v, +Fl( Y )  - -F2( Y )  

where 

The solution has the form 

Fl(Y) = UIY Y +  UY77,. 

U2 = @)E COS/~Z+ O ~ o . 0 ) + @ . 2 ) ~ ~ ~ 2 / 3 ~ + @ ~ o ) E 2 +  O!j2v2)E2~0~2 /3~+~ .~ .  (4.45) 

Again only the second harmonic and the mean-flow distortion induced by 
nonlinearity need to be calculated. From the continuity equation, we obtain 

0)  = - (2ia)-17(2? 0) Q 2 9  2) = i/3a-l@z. 2). 
2,Y ? 2 

The terms representing the mean-flow distortion satisfy the following equations : 

(a/at,) 02,k (0  0 )  = -1 -1 S 3 sin2eAW2) 0 ,  (4.46) 

(apt , )  Qy = - (a/ay) sit 2) +2/3UI @y. (4.47) 
The solutions are 

(4.49) Integration once with respect to Y yields 

x d * ( t ,  - y) A(t, - r ]  - E )  e-OEd.5 dr] + @T 2)(0, t , ) .  (4.50) 

As Y+ +ao, 

(@s2)+c.c.) - T4ia-1flsin4Bn 

+{order-one ‘no-jump’ terms}+ o( i) ,  

10 FLM 246 
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which is in fact the streamwise slip velocity generated by the nonlinear interaction 
inside the critical layers, to which the outer expansion of u has to match. This is the 
reason why the leading-order outer expansion of u should contain a spanwise- 
dependent mean-flow. Note that this mean-flow is strong in the sense that i t  has the 
same magnitude as the three-dimensional waves. We will show that the interaction 
of the fundamental three-dimensional waves with this mean flow affects the 
evolution of the waves. The significance of mean-flow/wave interactions has been 
studied extensively, e.g. see Benney (1984), Hall & Smith (1989, 1990, 1991), Smith 
& Walton (1990). In particular, Hall & Smith (1991) have shown that the nonlinear 
interaction of small-amplitude waves may produce an order-one mean-flow 
distortion, thus completely altering the mean-flow profile from its original laminar 
state. Compared with the present study, their critical layers are predominantly 
steady and viscous. This is because their nonlinear evolution timescale is much 
slower, with the result that only very small-amplitude waves are needed to generate 
a strong vortex flow (see Wu et al. 1992 for a further discussion of this point). 

We first seek a solution for V,; this is found to satisfy the following equation: 

(4.51) 

where L, is defined by (4.14), 

a 3  

a x a P  L 2 = -['U 6 YYY + oyyr 71 y2 + oY,, 7; Y+ :or,,, T;] - 

and the Reynolds stresses S,, and S,, are given by 

$12 = ( ~ / ~ X ) ( 2 ~ 1 ~ 2 ) + ( ~ / ~ Y ) ( ~ ,  v,+u2&)+(a/aZ)(ulw,+u2w,), (4.53) 

~ 3 2  = (a/ax)(ul w~+u~wl~+~a~a~~~wlv,+w~'v,~+~a~a~~~~wlw~~. (4.54) 

The Reynolds stresses contain different components, among which only those 
proportional to Ecospz and E3cospz will be needed later. Therefore we write 

S,, = Si'; l) E cospz +Sl"; l) E3 cospz+ C.C. + . . . , (4.55) 

S3, = Sk; ' )E  sin,& +Sit l)E3 sin@ + C.C. + . . . . (4.56) 

After some calculation, we have 

8:; 1) = Â O*'O. 0 )  +lJO;,(>2) -pW O*(O. 0 )  +'O V * C O ,  2) 

sl"; 1) = Â @, 0 )  + lJQC2, 2 )  - 3p01 Wi2 .2 )  + [ 0 $ 3 2 . 0 )  -38 2 1 p, 2,Y 0 )  1 7  

s&! 1) = [Id w;,p 2) + iaW O*'% 0 )  -1 p q  W*C0,2) ]  

+ [ -1iaW O*CO. 2) -LW T* 'O .  2'3 + [;@ p. 0 )  + @* pt 0'1, 

2, Y 1 2  4 1 2,Y 

+[$iaO1 Q(0 ,2 )+1O p*cO.2)'3+[(7* 13'2.0)-@* 2 1 p o )  2,Y 1 7  (4.57) 
2 l , Y  2 l , Y  2 

(4.58) 

(4.59) 

2 .  y 2, y l , Y  2 
A ? .  

1 2  2 1 2  

2 1 2  2 l , Y  2 2, y l , Y  2 

Sg.1) = 1  ZA - w2, - ( 2 , 2 ) - p @ , ~ y ) - 1 ~  Y 2 1 p o ) + @  2,Y l,Y P(2.0) .  2 (4.60) 

Inspecting the right-hand side of (4.51) together with (4.55) and (4.56), we find 
that V, has the form 

V, = < E cospz+ < E3 C O S / ~ Z +  pk2*o)E2+~ .~ .  + .. . , (4.61) 
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where the component proportional to E cos 3/32' has been omitted since it will not be 
used in deriving the evolution equations. However, to derive the amplitude equation 
for the two-dimensional wave, we need to solve for two more components, namely, 
6 E3 cosaz and @* O) E2. Thus we write the derivatives of the Reynolds stresses as 
follows : 

(a/&) s12 + (a/az) s,, = ME C O S ~ Z  cos PZ +@,o)E~ + C.C. + . . . . 
It is noted that the relevant part of the linear forcing term, i.e. (L, V, +L2 V,), is the 

same as F(')(Y, tl) E in the two-dimensional case (Wu 1991). So the solution (denoted 
here by Vi')E) driven by it has the following asymptotic behaviour as Y +  f 00, 

- (a;p, + 2q, b, +&;b,) Y +  (a; r, +p, d; + s, b,) log IYI 

+ { & +xi sgn ( Og) (a; r, + p,  d; + 8, b,) + . . . }. (4.62) 

We now write 

AT = ATl +M2 +AT3 +ATo, 

where M1 = id-Qco, 0 )  + & & J * ' O ,  2 2, y 2) + @Jp,($ 2), (4.63) 

(4.64) 

iV3 = 2iaO:, Q*o) ,  (4.65) 

M2 = i a C q  @o. 2) - 2aC2(9 1 2  O * ' O .  2), 

2S;l, = idAf,%o* 0 )  +;idj@o, 2) +;/3d@p.;) + idA*0(23 2 0 )  
2. y 2, Y 

+ ~ - * @ , 2 ' 2 ) + i p A * W ( 2 , 2 ) + i a C O  2 l , Y  fl092)-2a2O 2 1 2  O(092).  

The nonlinear forcing terms are deliberately split as above in order to aid the 
calculation of the solutions and their asymptotic behaviour. The solutions of (4.51 ) 
driven by X,, 

Lil)Vi:)yy =ATj,, (j = 0,1,2,3);  (4.66) 

are denoted by @) ( j  = 0,1,2,3) respectively, i.e. 

while 

We find that pio) makes no contribution to the jumps, and so matching c, = ( V l Y  + + V& + Vg)y) with the outer solution will yield the jump (c; -c;) 
-see (4.79). 

c = + V$l) + pp + Vi3' + V"'. 

We now solve for @,, ( j  = 1,2,3). It can be shown that 

@'yY = iS4 sin2 e Sm Srn rrnKp([ ,  y) 
0 0 0  

d(t, -C)d(tl y- C) xA*(tl -5-7-C) e-in(c-f)d5dy dC, (4.67) 

where KF)(t,y) = 253+[2y+2sin2 e(&+[y2). (4.68) 

Integrating with respect to Y from - 00 to + 00, we obtain the jump 

V&( + 00) - Vf'y( - 00) 

+m +m 

= R4j0 sin2 8 lo I0 Kil)([, y ) A(tl - 5) A(t, - y - 6) A*(tl - 25- y ) d5 dy , (4.69) 

where we have put 

j, = xlSI-1. (4.70) 

19-2 
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The solution driven byB2,  needs more effort. After some algebraic manipulation, 

we find 

x d( t, - 5) d( t, - 7) d*(t, - y - 6 )  e-is(5-o d6 dy d[. 

The solution induced by it can be expressed as 

= g4 sin4 OJ, (4.71) 

where J ,  and the necessary algebraic manipulations to obtain the jump of V;fl?, are 
given in Appendix A. Using (A 2), (A 7) ,  (4.71) and (A l) ,  we find that 

q:( + co) - @$( - 00)  

where If:)([, 7) = - 4t2(f;+ y) + 4 sin2 e[ -$t3 - 627 - ~721. (4.73) 

is the Reynolds stress generated by the interaction between the 
three-dimensional fundamental and the two-dimensional wave component. Using 
(4.35) we can show that 

m3pY = 2 i d @ ,  y y  + a R 1 0 ~ ,  y y  L~)PF,o)  + 2 i a S  1, Y V ( 2 , o )  2, Y - 2ia0-1 y 0* 1, YYAS'12iO). 

The forcing H3, 

(4.74) 

We find that the solution for VK),, is 

J -a2 

+ as-lO* f(2,O) - 2ia0-1 ' dfe-iR(tl-i) 0* 
1 , Y Y  (t",@?"'O. JI, 1, YY 2. Y 

For brevity, we write fky),, as 

Pi:),, = 283 sin2 + R4 sin4 er, + S4 sin4 81, + 2s4 sins el2,  (4.75) 

where the expressions for I , ,  I, and I,, and the necessary analysis to obtain the 
jump of ff$, are given in Appendix B. Using (B 2), (B 3), (B 4), (B 5) and (4.75), we 
obtain the jump condition 

~ & ( + o o ) - V ~ ~ ) ~ ( - O O )  = 4iS3josin28 52d*(t1-26)B(tl-5)d6 

+S4j0 sin4 8 lm la xi3)(<, 7) d(tl - 6)d(tl - 7 - E;)A*(t, - 25- 7) dCd7, (4.76) 

r 
where EL3)(&, 7) = 2E27 + 4  sin2 e [ g ] .  (4.77) 

From matching c,y to the outer expansion, we find that 

c7-c; = c,y(+co)-~,y(-03), (4.78) 
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and so using (4.62), (4.69), (4.72) and (4.76), we have that 

CT - c; = n: i sgn ( UY)(aTrj +p5 dT + sj b5) 

575 

+ 4n:iS2 sin2 0 Jo+m PA*@, - 25) B(t, - 6 )  dg, (4.79) 

where K(6,y) = (2k + t2r]) - 2 sin2 O(2F - 6y2) - 4 sin4 O(t2y + E$). (4.80) 

It is noted that (u7-a;) and (dT-d;) correspond to the classic +n: phase shift in 
the outer expansion, while (cT-c;) is modified by nonlinearity. As will be shown 
below, this has a significant effect on the evolution of the disturbance. 

So far the jumps obtained are sufficient to derive the amplitude equation for the 
oblique waves. To derive the amplitude equation for the planar wave, we need to seek 
the jumps (DT-D;) and (CT-C;). The jump (0;-0;) can be obtained by solving 
for p$,2*0) (see (4.61)) ; this satisfies the equation 

@) p(2 3,'YY 0 )  = @) p(2, 3 0 )  +@. O), (4.81) 

$WO) = 2 i d 1  @)+ ( ~ I / ~ I Y )  [$01 Vt)+@Oi1)1. where 

Substitution of (4.35) into (4.81) yields 

Eh2)$7cg~ = E ~ 2 ) B - 2 i ~ 2 ( y ) ~ , y y + 2 i c L o  YY [-iiS-lf,(~ 0 V2.Y - ( 2 , 0 ) -  o;18,,1 + & ~ v o ) .  

(4.82) 

The last three terms of the right-hand side are produced by the interaction between 
the oblique waves. After a tedious calculation it is found that the solution driven by 
them makes no contribution to the jump (4.83). The first forcing term is analogous 
to that in the two-dimensional case, and the solution driven by it therefore produces 
equivalent jumps (Wu 1991), namely 

$-a; = n:ip5b5sgn(Og), 0;-D; = -niR5b5sgn(U,). (4.83) 

Note that the first jump simply confirms the result obtained already. 
The remaining jump condition to be determined is (C:-C;). This is given by the 

solution at the next order, i.e. V, (see (4.2)). To solve for V,, we need to know the 
harmonic components and W,. Before proceeding to seek solutions for them, we 
first simplify &, yy. Here we note that as far as deriving the amplitude equation for 
the two-dimensional wave is concerned, we need to concentrate only on pi:)yy 
(j = 1,2,3,)  (see (4.66)) ; we need to consider @,)yy and Tg),, no further because they 
do not affect (CT-C;). 

By means of the transformation (r]-c) -fy, we write the integral J ,  (see (A 1)) as 
follows 

J ,  = lm lrn Crn lw [3y~ - F + 2 7 ~ -  25(y + g) -4 sin2 ~ ( y  + 5) (y + 2c)l e - ~ ( ~ + u - ~  

x A(t, - U- c)d(t, - U- 6- 7)A*(tl - u - 5- 7 - 6)  dtdy dcdu 

+ /o+w [o+rn lw lm [ (7 + c)2 - E2 + 2c(y + 5) - 2& - 4 sin2 S[( y + 2[)] e-iQ(T+c+u-B 

x A(t1 - u - c) A(tl - u - c- 7) d*(t, - u - 5- 6)  d t  dy d[du, 
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where additional transformations 7 + - 7 and ([+ 7) + [ have been made in the 
second integral so that the integration ranges of both integrals are the same. We also 
perform the transformation ( f - 7 )  +. f to obtain 

J,. = lm J:m lm lm [6c+4(q-E)g-2f(2f+y)-4sin2B(7+2[)2]e-iR(c'+u-n 

x A(tl - v - 5) A(tl - v - 5- 7) A*(tl - u - 5- 7 - f )  df d7 dcdu 

x A(tl - u - 6)  A(tl - U- 5- 7 - [) d*(t, - V -  5- 7) dfd7 dcdu. 

The second integral can be dropped because it does not contribute to the required 
jump. After performing the transformation (v + g) + [, and integrating by parts, we 
can reduce the first quartic integral to a triple integral 

J, = lmlmlm [ 2 e + 2 ( 7 - f ) ~ - 2 f ( 2 f + 7 ) [ - 4 s i n 2 e ( ~ ~ + 2 ~ ~ + 7 2 ~  

x e-in(c-@a(rl - [)d(t, - 6- q)d*(tl - 6-7 - f )  dfd7 dg. 

Applying a similar procedure to Il and I,, we finally have that 

c, y y  = q'yy + qyy + v",'yy + V$;Ly + . . . , 
QYy = S4 sin4 er, = d-'O?, y y  V$y*$), 
@ , ) y y  = a4 sin6 6Jv = 2S4 sin6 Oqg)170, 

Q;kY = 283 sin2 e p ,  

(4.84) 

(4.85) 

(4.86) 

(4.87) 

where 

J o  J o  J o  

x d(tl - [)d(t,-[- 7)A*(tl -5-7- f )  d5d7 dydu, (4.88) 
and 

&f, 7, c) = $FPE+T) +4sin2 e[$y~+~(7-5)~-~(5+27)5+$7(~+7)(2~+7)1 
+ 4 sin4 e[ - e + (f - 7)c + ( f 2  + 2f7)Q. (4.89) 

The harmonic component c satisfies the equation 

jp c, y y  = j@?) +&g) +@g'. (4.90) 

are given in The expressions for 
Appendix C. 

( j  = 1,2,3),  as well as the solution for 

We now seek the solution for W,. This term satisfies 

ap3 aw2 aw, LOW, = ---F2(Y)--F3(Y)--As,2, aZ ax ax (4.91) 

where 

We write 

F3( Y )  = iO,,, y3 + OUyr 71 y2 + O,,, 7; Y + :Urn 7:. 

W, = ~ ~ s i n / 3 z + i i r , ~ 3 s i n / 3 z + c . c  .+..., (4.92) 

where the components irrelevant to the generation of the two-dimensional 
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fundamental a t  the next order have not been written out. It is clear from (4.91) that 
% should include solutions driven by first three terms on the right-hand side of 
(4.91). However, these solutions do not contribute to the jump (CT- C;). So we shall 
only solve for the solutions driven by -S32, i.e. it is sufficient to solve for & which 
satisfies 

jp @ 3 - - -S(Ll). 32 (4.93) 

Following a similar procedure to that for solving and simplifying 6,  we have 

W3 = + @:) + @it) + @iW, (4.94) 

where (4.95) 

(4.97) 

(4.96) 

and the function 1:) is given by 

The function satisfies the equation 

After simplification, the solution can be written 

and the function f:) is defined by 

The streamwise velocity at  O(&) takes the form 

U3 = O3 E C O S ~ Z +  O3 E3 C O S ~ Z  + C.C. + .. . . (4.106) 

From the continuity equation it follows that 

(4.107) 

(4.108) 
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two-dimensional fundamental component in V,, i.e. 
For the purpose of deriving the amplitude equation, it is sufficient to seek only the 

V, = Vy,O)E2+c.c.+.... (4.109) 

The function pi2* O) satisfies the following equation : 

f,($ p(2.0) 4 , Y Y  - - f , (z)P(z.  1 3 0 )  + f,(2) 2 2  p(z. 0 )  + 2ia 13 o)/ay+ 4a2,9$ 0 )  (4.1 10) 

where Si3 O) and S$ O) are the components proportional to E2 in the Reynolds stresses 
XI, and S2, respectively, i.e. 

a a a s - -(2U1 u3+ q) +- (U1v,+ v, u3+ u2 v,) +z (U,  w3+ w1 u3+ u2 W2), 

s2, = (a/ax)vl ul + ( a / a ~ ) q +  (a/az)v, w,, 
l3 - ax ay 

and 

It is found that the solution driven by Szo)  does not contribute to the jump 
(CT - C;), and therefore Si? O) will not be considered further. 

We denote the solution driven by ( f ,? )@,O)  + f,(2)p(2, O) ) by piz)E. Following a 
similar procedure to that for the two-dimensional case (Wu 1991), we find 

(4.111) 

is complicated, but after some calculation 

S13 = S&O)E2+C.C .+... , s2, = Sy’E2+C.C .+... . 

Pit)y( + co - t$t)y( - co = 7ci sgn ( Oy) ( a , f ~ ,  + p p :  + b, Sj). 
The nonlinear driving term 2ia as$? 

we have 

2 i a a ~ % O ) / a ~  = - 2 i a 0 1 s y ~ , y + i a 0 1 , y y  6-44i0lpO,,~W~ 

-4iap01 R,y-3ia01 ~ , Y y - d ~ ~ , y y y + ~ ~ , y y )  
+ ~ i a O ~ , y < , y + i a O ~ , y y < - ~ i a p O ~ , ~ ~  

+ [ - 4 i ~ p ~ * ( o , 2 ) ~ ( 2 . 2 ) - p ~ ~ ( o . 2 ) ~ ( 2 , 2 )  2, Y Y I  

-$imp@ q3, y-iiao: <,YY+2iaO*(0,0)~(2.0) 2 , Y Y  2 

2 2, y 

+ [ - 2iaj3*‘0. 0 )  p 2 .  2) - 4 i a p 0 3  2 ) @ 2 , 2 )  
2 2 , Y Y  2 

-2ppz*,’> 2)@(2,2) 2,  y -ppyg)Wp’ 2)] + . . . , (4.1 12) 

where the dots are to remind the reader that we have ignored forcing terms that do 
not contribute to the jump. 

and I@) terms 
in R, etc., make the calculation of the asymptotic form of the forced solutions 
difficult. To overcome this difficulty, we notice that from the expansions of the 5- 
momentum and continuity equations 

(4.1 13) 

< = ( 3 i a O ~ ) - 1 ~ ~ ) ( < , y + ~ R ) - ~ ~ 1 ~ $ ~ ~ 1 ) .  (4.1 14) 

As already remarked, the ft)yy and @,)yy terms in c, and the 

= (iaUu)-lf,&l)(c, y + ~ R )  - t7;1$$:b1), 

Using the above relations and (4.35), we split 2iaS13,?) into four parts, i.e. 

2iasi4,,$ = N(r)  +j+p) +“t) + N @ ) .  (4.115) 

The expressions for N‘), etc. are given in Appendix D.1 

TAppendix D is available on request from the author or the Editorial Office. 
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We denote the solutions driven by N @ ) ,  N ( @ ,  Nt)  and N(*)  by pr), fp), pit) and pi*) 

(4.116) 

respectively ; thus 

p 4 -  - pi0 + pp + pp + pit) + pp. 
After integration by parts, we find that 

lU-lO* 
P Y Y  = 5 y 1. YY[E, Y +m1+ w3, YY[R, Y +PRl 

- 1 0 - 2  0 O* ) 7 ( 2 , 0 ) + ~ - 1 O * ( 0 . 0 ) p ( 2 . 0 ) .  (4.117) v y ( 1 , Y  l,Y Y 2,Y y 2,YY 2,Y 

After further integration by parts, we conclude that 

where 

where 

x d(tl - 6- u )  d( t,  - (5) d(tl - 71 - 6- u )  A^*(tl - c- 6) d6 dy dcdu, (4.121) 

x d(tl - ~)d(t ,  - 6- U) d(tl - 7 - U) d*(t, - 6- u - 6) d6 dq dgdu, (4.122) 

and 

Kio' (6 ,~ ,c ,u)  = 46(6+2~)(26+471+C+2u) 

+sin2 e[-f(6+271) ( S + 2 @ +  2u2) -&(g+ U) ( c + ~ u ) ] .  (4.125) 

The factors (7+2(;+2u) in Jjl), and (q+2v) in Ji2) follow from our grouping of the 
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forcing terms. The appearance of these factors makes the contributions from 
different stationary points isolated and therefore resolves the difficulty in obtaining 
the asymptotic forms of the related solutions. 

After some manipulation, it is found that 

X d(tl -7 - C)d(t, -7 - 6- [)d*(t, - 37- 25- E )  dEd7 df;, (4.126) 

where 

Kt(t,q, 5) = -$4+~(E-2[)73+&97E2+243E{+59~)72 

+ (FF + VE26+ +  ye)^ + ($Ezp + 3&? + $C4). (4.127) 

as Y + + co, are straightforward The solution for pi!$,, and the asymptote of 
to calculate ; the final result is 

B ( ~ I  - 5) d(t1-5-7)A*(t,-35-7) + -k 5)(7 
- sin2 dg( 3 + 25) (63 + 75))B( t, - 5- 7) d(t, - 5) B*(t, - 35- 27)) d3 d5. (4.128) 

The solution driven by Nr)  can be readily written out and there is no essential 
difficulty in obtaining the asymptotes of Vx)y as Y+ f co. However, because the 
solution consists of many terms, i t  needs a great deal of algebraic manipulation to 
simplify i t ;  part of this manipulation was done using the computer program 
Muthemuticu. The final result is 

X A( t, - 3 - 5- E )  A*( t,  - 37 - 25- 6 )  dE dy  d5, (4.129) 

where the kernel is given by 
183 4 WE> 7, 5) = iiF7 + ( -M+?5h3 + ( -&E2 -%E5+V6)rZ 

+ (YE3 +gc2[-i&? -$c)r + (it4 ++pc +yc2c + 2EC). (4.130) 

To match E,y with the appropriate outer expansion, we require 

c,.-cj- = ~ , y ( + c o ) - ~ , y ( - c o ) .  (4.131) 

Using (4.116), (4.111), (4.118), (4.126), (4.128) and (4.129), we have that 

Cl-C; = nisgn(0,) (uTRj+pjDDif+bjSj) 

+ 3g44j, lrn P&t, - C)d(t, - C-r)d*(t, - 35-7) d7 dc 

x d(t, -7- 5- 6)B*(tl - 37- 25- E )  dEd7 d5, (4.132) 
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where the kernel Kb(& 7,c) is 

KJE, 7 1 9 5 )  = Kt.(5,'I, 5) +K,(5, 'I, C) +a[, 'I, C) 
= - 3q4 - 4(5 + 25) v3 - (352 + 55 + 2 5 )  q2 + ( 35, + 555+ 4 5 )  57. (4.133) 

5. Evolution equations for the amplitudes 
5.1. Coupled amplitude equations 

Substituting the jumps (4.24), (4.25) and (4.79) into (3.38), we obtain the following 
amplitude equation for the oblique waves : 

where we have written go = fo/f, and glk = flk/f(k = 1,2). The constants f and fo 
have the same expressions as for a single two-dimensional wave (Wu 1991), i.e. 

where the sum is over all critical layers (there are two in the Stokes layer under 
consideration in this paper), and J, and J, are defined by (3.39) and (3.40) 
respectively. The constants fll and f12 are 

The kernel Ka(& 7) is given by 

'I) = ((452 + 557 + 3'12). 

Similarly the amplitude equation for the two-dimensional wave is 
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where we have written g2k = 2fik/f(Ic = 1,2 ,3) ,  the kernel Ka(& 7, g) is defined by 
(4.133), and 

f,, = -$na3 bpq1Ug13, (5.7) 

f,, = -&a47ci C, b~~bj~z~Og~4. (5.8) 

i 

i 

Essentially the same amplitude equations have been obtained by Goldstein & Lee 
( 1992) in their study of resonant-triad waves in adverse-pressure-gradient boundary 
layers. This is an interesting result, considering the apparent difference between the 
two flows and the fact that the Rayleigh waves in their study have long wavelengths, 
while in ours the modes have order-one wavelengths. The coefficients of the 
amplitude equations in the two studies are somewhat different however. Owing to 
their long-wavelength limit, Goldstein & Lee (1992) were able to give simple 
expressions for the coefficients. In  our study, the expressions for the coefficients are 
more complicated, involving the basic-flow profile and the eigenfunction of the 
Rayleigh equation. We believe that the expressions given in this paper are applicable 
to many other flows, including flows where the critical layers occur at inflexion 
points. Note that in Goldstein & Lee (1992), the coefficients of nonlinear terms are 
purely imaginary. This is a consequence of the long-wavelimit approximation and 
the fact that only one critical layer exists in their flow. In  our formation there can 
exist more than one critical layer with the result that the coefficients can be complex. 
I n  addition, the linear growth rate of our oblique waves is half that of the planar 
wave, rather than the four-fifths obtained by Goldstein & Lee (1992) for the case of 
long waves. 

Note that the first nonlinear term on the right-hand side of (5.1) represents the 
resonant interaction between the two-dimensional and the three-dimensional waves, 
and the second represents the self-interaction of the three-dimensional waves. The 
three-dimensional waves affect the development of the two-dimensional wave 
through the mutual cubic interaction with the two-dimensional wave, as well as 
through the quartic self-interaction of the three-dimensional waves. This is very 
different from conventional resonant-triad amplitude equations, where the three- 
dimensional waves affect the two-dimensional wave through a quadratic interaction. 
As pointed out by Goldstein & Lee (1992), the absence of quadratic feedback from 
the three-dimensional waves is because the two-dimensional wave component 
generated by the quadratic interaction between oblique waves causes no jump across 
the critical layers and therefore does not appear in the amplitude equation. We 
further note that this conclusion holds even when viscosity is retained a t  the leading 
order of the critical-layer equations. 

I n  order to evaluate the coefficients in (5.1) and (5.5), we need to solve the 
Rayleigh equation. This is done for the Stokes layer by the same method as described 
in Wu (1991). As there we concentrate on neutral modes on the right-hand branch 
of curve A, although the analysis is equally valid near the left-hand branch (see $2). 
The plot of (29,) against the wavenumber is the same as in figure 3 of Wu (1991) and 
Wu & Cowley (1992), provided a is replaced by 2a; the real part of go is always 
negative. The coefficients gll, g,,, and gZ3 are plotted against the wavenumber a 
in figures 3(a) and 3(b), while g,, and g,, are related to g,, by g12 = -&gZ1, and 
9 2 2  = B921. 
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FIQURE 3. (a)  The real parts and ( b )  the imaginary parts of the coefficients gll, gzl and g23 in the 
coupled amplitude equations (5.1) and (5.5). 

In  order to match to the earlier linear stage in an asymptotic sense, the amplitudes 
A and B should have the following asymptotic behaviour (see e.g. Goldstein & Leib 

A +AoegoTitl, B+Boe2g0T1tl as t l +  - co. (5.9) 
1989) 

Thus the evolution of the resonant-triad waves is described by the above coupled 
amplitude equations (5.1) and (5.5) together with the appropriate ‘initial ’ conditions 
(5.9). 

As demonstrated in $2, in order for there to be a feedback mechanism, the 
magnitude of the oblique waves is required to be larger than that of the planar wave. 
To illustrate this point more clearly, we rescale the amplitude equations by 
introducing the following variables 

f =  -71tl-t10, B=BeiT~/(-71)4,  K=AeiTA/A, 
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where the real constants tI0,  TA, TB and h are chosen so that 

The rescaled amplitude equations and asymptotic conditions are as follows : 

dB 
- = - 2g0B+h0g,l Irn dt cB( f -c )X( f -  C-r)X*(f-  35-7) d7 dg 

(5.11) 

(5.12) 

where A, = wi/(B07;)1, and q50 = arg [A:/(B,T;)]. The real parameter A, accounts for 
the effect of the initial amplitude of the three-dimensional waves, while g50 represents 
the phase difference between the three- and two-dimensional waves. 

Up to now we have assumed that the three-dimensional waves are initially 
stronger than the two-dimensional wave. If on the other hand, E 4 8, i.e. lhol 4 1, 
then these equations reduce to 

- a- = -goA - + g l l e - ‘ + ~ ~ m  PX*(t-25)B(f-fJd5, 

df 0 

dB - 
- = -2g0B. 
df 

(5.13) 

(5.14) 

These are the reduced equations derived by Goldstein & Lee (1992) assuming that all 
the waves have an equal amplitude initially. It is clear that the three-dimensional 
waves have no back reaction on the two-dimensional wave. This is the so-called 
parametric resonance. We note that it can occur whenever S >, O[(OLC~)~] >> 0 and that 
its effect is negligible when 6 < ( 0 1 ~ ~ ) ~ .  As Goldstein & Lee (1992) show, in the 
parametric-resonance regime the three-dimensional waves experience a faster-than- 
exponential growth, while the two-dimensional wave continues to grow expo- 
nentially. Ultimately the magnitude of the three-dimensional waves becomes equal 
to $, at which point the double and triple integrals in (5.10) and (5.11) become so 
large that the cubic and quartic terms can no longer be neglected. The evolution then 
enters the regime described by the fully coupled (5.10) and (5.11). Although an 
asymptotic matching of the two regimes could be constructed with a careful shift of 
the time origin, it seems unnecessary since the fully coupled equations keep all the 
terms of (5.13) and (5.14), and are uniformly valid in the two regimes. 
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5.2. Finite-time singularity structure 

It seems that solutions of (5.10) and (5.11) develop a finite-time singularity. The 
structure for it is given by 

(5.15) 

as f+t,, where a,, b, are complex numbers and a is a real number. In fact the 
structure depends only on the order of the polynomial kernels in the amplitude 
equations. 

Substitution of the above expressions for 2 and B into (5.10) and (5.11) yields 

(3+ia)a, = e-i$ogllDll a$ b,+A,gl,Dl,a,l~,12, (5.16) 

( 4 + 2 W 0  = ho (gZ1Dz1 +gz2%) ~ ~ l ~ 0 1 2 + ~ ~ e i ~ o g z ~ ~ ~ ~ ~ i l ~ ~ 1 2 ,  (5.17) 

where the constants D,, etc. are given by the following convergent integrals : 

D1,= lW E Z (  1 + 5 ) - ( 4 + 2 i d (  1 + 25)-(3--'") d5 

D,, = lW l w K a ( 5 ,  7) [(I  + 5) (1  + 5+ 7)]-(""")( 1 + 25+ 7)-(3-iu) dcdy, 

Solving b, from (5.17) and substituting into (5.16), we have 

The parameters la,J and v can be determined from (5.18). After integrating (5.10) and 
(5.11) numerically, the singularity time t, can be determined as described in Wu 
(1991), i.e. by fitting the numerically calculated functions K and B to (5.15). 
Surprisingly, the two-dimensional wave has a 'more singular' structure than the 
three-dimensional waves, as can be seen from (5.15). This implies that as the 
singularity is approached the two-dimensional wave will grow faster than the three- 
dimensional waves - eventually attaining a magnitude comparable with that of the 
three-dimensional waves. Indeed, when the fully nonlinear Euler stage is reached, 
the two- and the three-dimensional waves attain an order-one magnitude (see below). 

The singularity structure (5.15) was also proposed independently by Goldstein & 
Lee (1992), and has been confirmed by the numerical solutions of their coupled 
amplitude equations. As mentioned earlier, the coefficients in their equations differ 
from those in the present study. Therefore, we integrate our amplitude equations 
(5.10) and (5.11) numerically using the coefficients calculated for the Stokes layer. 
The parameters are A,, 4, and wavenumber a. Both predictor-corrector (Milne's 
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FI~TJFLE 4.(a) lnl& and (b )  lnpl vs. the scaled time t"= - g o f ( g o ,  = Re (go) < 0) for u = 0.6, 
q5, = 0. The parameter A, = 1.0,0.1,0.01 and 0. Solid lines: numerical solutions; dotted lines: local 
asymptotic solutions (5.15). 

method) and Adams-Moulton methods with sixth-order accuracy were employed to 
check the reliability of the solutions. We present our results in figures 4-6. Figures 
4 ( a )  and 4 ( b )  show the amplitude development of the oblique and planar waves 
respectively; a = 0.6 and q5, = 0. Results for a = 0.4 and q5, = 0 are displayed in 
figures 5 (a) and 5 ( b ) .  It is seen that a singularity always seems to occur except when 
A, = 0, i.e. except for the parametric resonance case (Goldstein & Lee 1992). As A, 
increases, i.e. as the initial amplitude of the oblique waves is increased, blow-up 
occurs earlier. When A, is small, for example A, = 0.01, the disturbances experience 
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a parametric-resonance stage before entering the fully interactive stage. However, 
when A, is larger, say 1.0, the parametric-resonance stage is not obvious, and the 
disturbances seem to enter the fully interactive stage directly. 

The effect of the phase difference, #,, on the evolution of the waves is illustrated 
in figures 6(a)  and 6 ( b )  for a = 0.4 and A, = 0.1. It is seen that in the range of 4, 
investigated, i.e. 0 <do <in, an increase of 4, delays the occurrence of the 
singularity; of course this trend is reversed as #, is increased further. An important 
feature is that the instantaneous amplitude of the oblique waves depends on the 
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q50 = 0 (solid line), in (dashed line), and fn (dotted line). 

phase difference rather sensitively. This suggests that the phase difference will have 
to be specified if a meaningful quantitative comparison between theory and 
experiments is to be made. 

Before closing this section, we turn to examine the validity of the amplitude 
equations (5.10) and (5.11). Following an idea of Goldstein & Leib (1989), we examine 
the asymptotic growth rates in the vicinity of the singularity. From the singularity 
structure (5.15), it follows that asymptotic growth rates IAtlt/lAtl and IBtlt/lBtl 
behave like ( ~ t l / l a , l ) ~  and ( ~ B t ~ / ~ b o ~ ) ~  respectively, where At  = at and Bt = 6B are the 
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unscaled amplitudes of the three- and two-dimensional waves respectively. Therefore 
the initial scaling, i.e. 

growth rate - (At)+ - (Bt)i, 

is unchanged by the singularity. As Goldstein & Leib (1989) observe ‘this suggests 
that the basic asymptotic structure will remain intact, and the present solution will 
not break down until the amplitude of the disturbance becomes order one. The flow 
will then be fully nonlinear and unsteady in the whole field, i.e. it  will be governed 
by the Euler equations’. This property of Hickernell type of amplitude equations has 
been found in other flows, e.g. Goldstein & Leib (1989), Goldstein & Choi (1989). 

6. Discussion and conclusions 
In  this paper, we have discussed a resonant-triad interaction where all three waves 

interplay and reinforce each other. The resulting amplitude equations are different 
from those of Raetz (1959), Craik (1971) and Smith & Stewart (1987) in two 
important aspects. (This comparison is of mathematical interest, and does not mean 
that our analysis applies to the Blasius boundary layer.) Firstly, the local growth 
rates depend on the whole history of evolution, unlike a conventional resonant triad 
where the local growth rates depend only on the instantaneous amplitudes of waves. 
Secondly, the back reaction of the oblique waves on the two-dimensional wave is 
accounted by two cubic terms and one quartic term, rather than only one quadratic 
term. The solution of our amplitude equations can always develop a finite-time 
singularity. The occurrence of a finite-time singularity in the conventional resonant- 
triad equations is also common, but tends to depend on the coefficients (Craik 1975). 
For instance, Smith & Stewart (1987) found that no finite-time singularity was 
allowed in their resonant-triad equations for ‘ high-frequency ’ lower-branch 
Tollmien-Schlichting waves in a Blasius boundary layer. While it would be 
interesting to see whether our singularity could be removed by viscous effects, to 
have included them here would have greatly complicated an already complex 
analysis. In  the case of a two-dimensional wave, it has been shown that viscous 
effects generally delay the occurrence of the finite-time singularity, and in certain 
cases, sufficiently strong viscosity can eliminate the singularity completely (e.g. 
Goldstein & Leib 1989). However, Wu (1991) and Wu & Cowley (1992) have shown 
that for two-dimensional disturbances in a Stokes layer, there is a large range of 
wavenumbers for which nonlinearity has a strong effect in the sense that a 
singularity always occurs no matter how large the scaled viscosity parameter is. See 
also Wu et al. (1992) for a study of the viscous effects on disturbances consisting of 
a pair of oblique waves. 

The kernels in the amplitude equations are fully determined by nonlinear 
interactions inside the critical layers and do not depend on the detailed profile of the 
basic flow. Therefore, the amplitude equations are universally applicable to any basic 
flow which supports Rayleigh instability waves, provided appropriate conditions 
such as those listed at the end of $2 are met. Moreover, we have argued that the 
amplitude equations remain valid until the amplitude of the disturbance becomes 
order one; the equations thus provide a full description of the evolution of a 
resonant-triad of waves from their linear small-amplitude stage up to the fully 
nonlinear order-one-amplitude stage. The parametric resonance can be treated as a 
special limit of the fully interactive case. 

The observation that an initially small disturbance can be further amplified by 
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nonlinearity provides a possible explanation for the instability and transition of the 
Stokes layer on a flat plate. It appears that instability and transition may be caused 
by this nonlinear instantaneous growth rather than by the net growth of disturbances 
over a period as predicted by Floquet theory. Since the disturbances that we 
considered have high frequencies, we believe that the bursting phenomenon observed 
in oscillatory Stokes layers (e.g. Merkli & Thomann 1975) is related to the explosive 
growth predicted here. 

As in Goldstein & Choi (1989)) the nonlinear interaction between waves drives a 
strong mean flow with the same magnitude as the oblique waves (cf. Hall & Smith 
1991). The growth of this mean flow is enhanced by the resonance mechanism. 
Moreover, both the measurements and visualization of Hino et al. (1976, 1983) reveal 
the existence of a vortex structure in unstable Stokes layers. 

Besides the above overall qualitative agreement of our theoretical predictions with 
experimental observations, there are some quantitative conclusions that may be 
drawn by combining the present nonlinear results with the linear results of Cowley 
(1987). Firstly, it was shown by Cowley that the largest possible wavenumber for a 
growing mode was a, = 1.43, and we have shown that for a pair of three-dimensional 
modes (a, kp,c), resonance with a two-dimensional mode ( 2 4 0 , ~ )  occurs if /3 = 
4 3 a .  Obviously it is required that 2a < a,, i.e. O! < 0.72 ; then 

p = 1/30! < 1.25. 

Suppose that the disturbances are basically three-dimensional and amplified by 
resonance, then the streamwise wavelength, say A,, of the observed disturbance 
should be larger than 8.73S*, i.e. 

A, 2 8.736*, 

and the spacing, say A,, between two neighbouring streaks should be larger than 
2.526*, i.e. 

A, 2 2.526*, 

where S* is thickness of Stokes layer. Thus our theory gives a ‘ lower bound’ of space 
scales of observable disturbances. Monkewitz & Bunster (1987) estimated from their 
experiment that A, is about lo&*. Hino et al. (1983) measured A,, and found that it 
was 1.5 cm, which is 3.76*. Both seem to be in the predicted range. Secondly our 
nonlinear theory shows that disturbances are substantially amplified by nonlinear 
effects in the neighbourhood of neutral curves, which means that initially small 
disturbances can attain a finite amplitude by this nonlinear amplification. Referring 
to Cowley’s (1987) neutral diagram, we may conclude that very small-amplitude 
initial disturbances are most likely to be observed shortly before or around the phase 
in of the basic flow. This conclusion is in agreement with the observation of 
Monkewitz & Bunster (1987). But others, e.g. Akhavan et al. ( 1 9 9 1 ~ )  and references 
herein, showed that explosive growth occurs at the end of the acceleration phase, i.e. 
phase 0 in the notation of the present study. It is possible that this discrepancy arises 
because of different levels of background noise in the various experiments (see Wu 
et al. 1992 for a discussion of this point). However, we also note that all the 
experiments were actually conducted for finite Stokes layers, where an additional 
parameter A = h/S* occurs (here h is either the half-width of a channel or the radius 
of a pipe). The value of A in most experiments (including that of Merkli & Thomann 
1975) is in the range of 3 to 10, but it is about 44 in the experiment of Monkewitz 
& Bunster (1987). Though this difference does not seem to alter the basic flow 
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significantly, it  is possible that at low A ,  some new mode which does not exist a t  
high A may bifurcate and cause transition. 

Finally we note that various extensions of our theory are possible. For instance, 
the oblique waves could be allowed to have different amplitudes, viscous effects could 
be included in the critical layers, and wavetrains modulated in both the spanwise and 
streamwise directions could be allowed for. 
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referees made many helpful comments and constructive suggestions. The author is 
also grateful to Dr M. E. Goldstein and Dr S. S. Lee for sending him the final version 
of their paper. Dr S. S. Lee and one of the referees are thanked for raising the 
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Appendix A 
In  (4.71), we have that 

J = lm lm la la 5-1[52 + (c+ 257 + 4 sin2 qr + [(c- 6) e-ifi(c++u-n 

-ce-iR(&+u)]d(t,-u-c)d(t, -~-r)Al*(t,-u-r-5)e-~.(s+"-n dtdqdgdu, 

The factor 5-l in the kernel leads to difficulties in deriving the asymptotic behaviour 
of s+g J ( Y )  d Y ;  this is needed to obtain the jump (c3f-c;). To resolve this problem, 
we split J into three parts, namely J,, J,, J,: 

J =  J,+4sin28J,-J,, (A 1) 
where 

J, = Im lm [ p  - 5 2  + 2 7 ~ -  2 ~ 7  - 4 sin2 e(7 + c)r] e-ia([+u-t) 

x A(t, - V -  g)A(t, - U- q)A*( t ,  - u - 7 - 5) dEd7 dcdu, 

x d ( t ,  - u - c)A(t, - u- 7)A*(tl - u - 7 - 6)  e-ia(b+u-o d6dy dldu, 

J ,  = la lm la [5+ 211 + ge-io(C+.+.) 

x d(t, - u - c ) A ( t ,  - u- 7) A*(t, - u - 7 - 5) eiaEd5dy dcdu. 

In fact the integral J ,  turns out not to contribute to the jumps that we require, and 
thus will not be considered henceforth. 

Integration of J ,  with respect to Y from - co to + co yields 

J,(Y) d Y  = 2 j 0 l m  Crn lm [S- ([+ u ) ~  +275-2(5+ u)r-4sin28(q+6)r] 

x d(t, - ~-7)A( t ,  - U- c)A*(t, - 2 ~ - 7 -  c) d7 d c d ~ .  



592 x. wu 
After simplification of the right-hand side, the above equation can be written 

x A(t, - 6 )  d(t, - c-- 7) d*(t, - 26- 7) dtd7. (A 2) 

The integral J, can be reduced to a triple-integral form 

1 [-172p[e-i8(7-o - e-mq 

x A ( t ,  - C)d(t, -7)d*(tl - g- 6 )  e-ie(7-o dEd7 dg, (A 3) 
or the alternative form 

It will be seen that the factor 7 in the kernel of J, (see (A3)),  which has been 
introduced by combining two Reynolds stress terms, is important for the success of 
the following procedure for analysing the asymptote of J,. Integrating J, with 
respect to Y, we have that 

sin Sz (7 - 6 )  sin 

r-E --I 7 
J,( Y) d Y  = S-l lrn lrn Jo+rn (-lv2p [ c 

In order to calculate the main contributions to the above integrals, as a+ f 03, we 
split the kernel into the form 

The first term represents the contribution from 6 = 7, the second and the third 
represent the contributions from = 7 = 0. After the kernel is so split and factorized, 
the contributions from different stationary points can be identified. To obtain the 
asymptote of the multiple integral, we now essentially need to deal with the 
asymptotes of several single integrals. By using a Mellin transform method (Bleistein 
& Handelman 1990), we find that only the first term contributes an O(1) jump, i.e. 

~ r n J ~ ( y ) d Y = j o ~ r n ~ r n ~ ~ ~ ( t l - - ~ ) ~ ( t l - ~ ) d * ( t l - ~ - ~ ) d ~ d ~ .  -03 

After further transformations, this can be rewritten 
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Appendix B 
In  (4.75), we have that 

c e-i"(s+v+u-o A(t, - u- y)d(t, - u- E)A*(t, - u- 8 d6dy dcdu. 

Substituting the expressions for l?:,yy and into I,, we have that 

I, = - l m ~ r n l m c [ p + 4 s i n 2 e ( 6 + 7 ) 7 ]  (5+27)-1[e-~(6+27-9- 0 1  ac 

~d(t,-~)d(t,-~-r])d*(t,-~)e-~~(~+~~)d~d~d~. 
Integration with respect to Y yields 

ry I,( Y) dY 
-Y 

Here again the kernel is split up as follows: 

Following a similar procedure to that used in simplifying J,, we can obtain 
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The jumps related to the integrals 
are 

I ,  and I, are straightforward to calculate, and 

+aJ 

ILb)(Y)dY = 2j0[mpKl(r,-25)B(t,-5)d5. (B 3) 

pm I,( Y) dY = 2j0 rm rm ([+ q)'qd(t, - E)d(t, - E-q)d*(t, -25-  7) dtdy, 
J -aJ J o  J o  

(B 4) 

and 

where 
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The solution driven by fig) is then 

@’yY = g4 sin4 e[& +fl + 2 sin2 ef2] + 2 i P  sin2 e p ,  
fv = ipg-5 sin-4 Q(2, o), where 1,YY 2, Y 

and 
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